The Nimbus radiofrequency multi-tined expandable electrode aims to improve radiofrequency neurotomy outcomes. Radiofrequency thermal neurotomy (RTN) is recognized as a highly effective intervention for patients suffering from intractable pain. RTN relieves pain by inducing thermal coagulation of a segment of the afferent nociceptive pathway, effectively interrupting transmission of sensory information from a pain generator to the central nervous system and brain.

There is widespread support for the use of RTN in the treatment of a wide range of spinal and non-spinal pain syndromes in the medical literature. Indications range from sacroiliac (SIJ) zygapophyseal facet joint pain and trigeminal neuralgia to pain associated with metastatic disease.

RTN is the neuroablative procedure of choice because:

  • It creates a lesion with a predictable size and shape
  • The lesion produced is reproducible and repeatable
  • It enables accurate lesion temperature feedback via a thermocouple, permitting tissue ablation within a safe and effective range (50°-100° C)
  • The availability of motor and sensory stimulation optimizes safe and effective needle placement

RF Reimagined

Achieving Optimal Results is Challenging

To achieve optimal pain relief, the pain specialist performing RTN must produce the ideal lesion, parallel and adjacent to the target neural pathway. The efficacy of pain relief following RTN hinges on complete destruction of the afferent nociceptive pathway, and the duration of relief is considered proportional to the length of nerve ablated.

Experience suggests that a 10mm interruption of the pain-transmitting pathways is desired. Although various techniques have been developed for delivering the ideal lesion to the target neural pathway, it is often technically challenging to produce an RF lesion of optimal volume and orientation. This is because the lesion resulting from the RF technique not only must be large enough to encompass anatomic variation in the afferent nociceptive pathway but also oriented to optimize the length of the neural pathway coagulated.

EX-VIVO Visible Tissue Coagulation

Following proof-of-concept testing the initial aim was to estimate the size and reproducibility of the lesion shape based on visible coagulation of raw tissue Electrodes were placed in surface contact with tissue samples and inserted into other tissue samples after all were equilibrated in a 37°C water bath. More than 100 lesions were created in muscle tissue and organ tissue.

Heating cycles intended to closely reproduce clinical practice were performed using commonly available RF generators (range 60 seconds -240 seconds / 65°-90°C) and lesion size was measured.

There was no evidence of anomalous heating such as boiling, charring, or cavitation. Data compiled for all heating cycles revealed minimal variation in lesion size beyond a 75°C/80 second threshold. The lesion produced was highly reproducible and consistently directional with an average volume of 467 +/- 71 mm3/ lesion.The lesions assumed an elongate spheroid shape and were offset from the central axis toward tines. A graphic showing the size and orientation of the lesion was created.

IN-VIVO Thermal Mapping

Visible coagulation and thermal imaging studies documented the formation of consistent lesion geometry with a predictable thermal signature. In-vivo thermal mapping method was performed by placing the Nimbus large-field directional RF electrode at the base of the superior articular process (SAP) of L4 and L5 to target the course of the medial branch. A “down-the-beam” or “gun barrel” technique was used and consistently produced an optimally shaped 10 mm lesion, indicating that this technique will likely result in a technically superior lumbar medial branch neurotomy.

The in-vivo temperature mapping confirmed a safe and technically effective thermal profile consistent with the ex-vivo results. Importantly, neurodestructive temperatures were achieved in the target tissue without undesirable heating of collateral structures or adjacent spinal nerves. In addition, thermal bias toward the direction of the tines the directional nature of the lesion was reconfirmed.

Revolutionary Design

The Nimbus, a novel RF electrode, was developed to produce a larger volume, optimally shaped lesion approximately 8-10 mm in diameter, to enable pain management specialists to more predictably target ablation, including anatomic variation, using technically simple, easily mastered electrode placement techniques. The Nimbus RF electrode increases the functional electrode surface area, spreads electrical current density and increases the volume of tissue heated resulting in a larger ablation zone.

The Nimbus RF electrode design specifications include:

  • Optimal 8-10 mm lesion diameter
  • Lesion offset from central axis of cannula to allow directed lesioning of target to better spare collateral tissue
  • Capable of meaningful motor and sensory stimulation
  • Down the beam, perpendicular approach to target nerves
  • Contains lumen for injection
  • Robust, simple, mechanical design, compatible with existing RF generators
  • No additional equipment requirement
  • Efficient with short heat cycle/target

The device uses expandable metal tines to diffuse the RF current density in the target tissue thereby increasing the functional electrode surface area. Increased functional electrode surface area proportionately increases the volume of tissue heated producing a larger ablation zone compared to results from a standard monopolar cannula. The tines are deployed and retracted with a simple helical rotation of the hub.

When deployed, the tines function as antennae, expanding and concentrating the current density and predictably enlarging the lesion.

Because they are unilaterally offset from the axis of the central cannula they create a directional lesion that enables selective targeting of the nociceptive pathway with decreased collateral tissue damage.

Moreover, the distance the lesion propagates from any active electrode surface is limited and predictable. This attribute of the lesion is vitally important because it allows meaningful sensory and motor stimulation. To further ensure patient safety, the internal design of the device couples the tines and the central cannula with the inserted thermocouple permitting real-time monitoring of critical temperatures in the ablation zone. A central lumen allows insertion of a standard thermocouple and/ or anesthetic or medication injection prior to lesion.


The Nimbus multi-tined, expandable RF electrode was developed using dual deployable tines for electrical field diffusion and increased functional electrode surface area. The lesion it produces is geometrically predictable and thermally stable.

The innovative design of the electrode and the geometry and stability of the tissue lesion it produces are uniquely suited to safe, technically efficient and effective interruption of nociceptive pathways. Based on detailed anatomical research into afferent pain pathways, the innovative electrode design enables practitioners to consistently achieve appropriate tissue ablation with fewer heat cycles and less global tissue trauma compared to the current technology.

The advent of a technologically advanced RF electrode that creates directional and optimally-sized lesions for neurotomy holds great promise for interventional pain management. The design simplifies technique and readily adapts to various RF ablation targets including the cervical, thoracic and lumbar zygapophyseal joints, the sacroiliac joint, and other targets along the spinal sympathetic chain.